How Pauli-Villars' regularization tells the Nambu-Goto and Polyakov strings apart

Yuri Makeenko (ITEP, Moscow)

- Y. M. arXiv:2204.10205 [hep-th]
- J. Ambjørn, Y. M. MPLA 36, 2150136 (2021) [arXiv:2103.10259]
- Y. M. Nucl. Phys. B 967, 115398 (2021) [arXiv:2102.04753 [hep-th]]
- Y. M. JHEP 07, 104 (2018) [arXiv:1802.07541]
- J. Ambjørn, Y. M. IJMPA 32, 1750187 (2017) [arXiv:1709.00995]
- J. Ambjørn, Y. M. Phys. Rev. D 96, 086024 (2017) [arXiv:1704.03059]
- J. Ambjørn, Y. M. Phys. Lett. B 770, 352 (2017) [arXiv:1703.05382]
- J. Ambjørn, Y. M. Phys. Lett. B 756, 142 (2016) [arXiv:1601.00540]
- J. Ambjørn, Y. M. Phys. Rev. D 93, 066007 (2016) [arXiv:1510.03390]

Content of the talk

- effective string philosophy - invariant cutoff $\Lambda^2 \sqrt{g}$
- mean-field solution of regularized bosonic string
 - the Alvarez-Arvis spectrum
 - the Lilliputian scaling limit
- instability of the classical vacuum for d > 2
 - stability of the mean-field vacuum for 2 < d < 26
- systematic expansion about the mean field
 - Pauli-Villars' regularization
 - Theorem about cancellation of infrared divergences
- the beyond Liouville action
 - integrating the Lagrange multiplier λ^{ab}
 - the energy-momentum tensor
 - DDK computation of conformal weight and the central charge
 - $-R^2$ versus minimal Polyakov's string
 - difference between the Nambu-Goto and Polyakov strings
 - cancellation of logs at one and two loops

1. Introduction

Problems of string theory

inherited from 1980's

- Non-perturbative lattice regularization (by dynamical triangulation) scales to a continuum string for $d \le 1$ but does not for d > 1 (same for hypercubic latticization of Nambu-Goto string in d > 2) Durhuus, Fröhlich, Jonsson (1984), Ambjørn, Durhuus (1987)
- Knizhnik-Polyakov-Zamolodchikov (1988), David (1988), Distler-Kawai (1989) string susceptibility index of (closed) Polyakov string is not real for 1 < d < 25

$$\gamma_{\text{str}} = (1-h) \frac{d-25 - \sqrt{(d-1)(d-25)}}{12} + 2$$
 genus h

Philosophy of effective string

String is formed by more fundamental constituents

Effective or induced or emergent string makes sense when it is long

Examples:

- Abrikosov vortices in superconductor
- Nielsen-Olesen string in the Higgs model
- Confining string in QCD

In particular no tachyon for $\beta > \beta_{tachyon}$

Pretty much like the view on Quantum Electrodynamics

2. Mean-field vacuum of bosonic string

Nambu-Goto string via Lagrange multiplier

Lagrange multiplier λ^{ab} for independent metric tensor ρ_{ab}

$$K_0 \int d^2 \omega \sqrt{\det \partial_a X} \cdot \partial_b X = K_0 \int d^2 \omega \sqrt{\rho} + \frac{K_0}{2} \int d^2 \omega \lambda^{ab} \left(\partial_a X \cdot \partial_b X - \rho_{ab} \right)$$

World-sheet parameters $\omega_1, \omega_2 \in \omega_L \times \omega_\beta$ rectangle

Closed bosonic string winding once around compactified dimension of length β , propagating (Euclidean) time *L* (cylinder or torus). No tachyon if β is large enough

Classical solution

$$\begin{split} X^{1}_{\mathsf{CI}} &= \frac{L}{\omega_{L}} \omega_{1}, \quad X^{2}_{\mathsf{CI}} = \frac{\beta}{\omega_{\beta}} \omega_{2}, \quad X^{\perp}_{\mathsf{CI}} = 0, \\ \rho_{ab}]_{\mathsf{CI}} &= \operatorname{diag} \left(\frac{L^{2}}{\omega_{L}^{2}}, \frac{\beta^{2}}{\omega_{\beta}^{2}} \right) \qquad \lambda^{ab}_{\mathsf{CI}} = \rho^{ab}_{\mathsf{CI}} \sqrt{\rho_{\mathsf{CI}}} \end{split}$$

minimizes the Nambu-Goto action (a classical vacuum)

Conformal gauge if
$$\frac{\omega_L}{\omega_\beta} = \frac{L}{\beta}$$
 then $\lambda_{cl}^{ab} = \delta^{ab}$

Induced (or emergent) action

Gaussian path integral over X^{μ}_{q} by splitting $X^{\mu} = X^{\mu}_{cl} + X^{\mu}_{q}$:

$$S_{\text{ind}} = K_0 \int d^2 \omega \sqrt{\rho} + \frac{K_0}{2} \int d^2 \omega \lambda^{ab} \left(\partial_a X_{\text{cl}} \cdot \partial_b X_{\text{cl}} - \rho_{ab} \right)$$
$$+ \frac{d}{2} \text{tr} \log \mathcal{O}, \qquad \mathcal{O} = -\frac{1}{\sqrt{\rho}} \partial_a \lambda^{ab} \partial_b.$$

Operator \mathcal{O} reproduces the Laplacian Δ for $\lambda^{ab} = \rho^{ab} \sqrt{\det \rho}$

Additional ghost determinant in the conformal gauge $\rho_{ab} = \rho \delta_{ab}$

$$-\frac{1}{2} \operatorname{tr} \log \left(-\Delta_a^b + \frac{1}{2} (\Delta_a^b \log \rho) \right)$$

Induced (or emergent) action coincides with effective action for smooth fields

2D determinants diverge and has to be regularized

Regularization of determinants

Proper-time regularization of the trace

$$\operatorname{tr} \log \mathcal{O}|_{\operatorname{reg}} = -\int_{a^2}^{\infty} \frac{\mathrm{d}\tau}{\tau} \operatorname{tr} \mathrm{e}^{-\tau \mathcal{O}}, \qquad \Lambda^2 = \frac{1}{4\pi a^2}$$

Pauli-Villars regularization of the trace

Ambjørn, Y.M. (2017)

$$\det(\mathcal{O})|_{\text{reg}} \equiv \frac{\det(\mathcal{O})\det(\mathcal{O}+2M^2)}{\det(\mathcal{O}+M^2)^2}$$

$$\operatorname{tr} \log \mathcal{O}|_{\operatorname{reg}} = -\int_0^\infty \frac{\mathrm{d}\tau}{\tau} \operatorname{tr} \mathrm{e}^{-\tau \mathcal{O}} \left(1 - \mathrm{e}^{-\tau M^2} \right)^2, \qquad \Lambda^2 = \frac{M^2}{2\pi} \log 2.$$

is convergent as finite regulator mass M and divergent as $M \to \infty$.

For Pauli-Villars regularization beautiful diagrammatic technique and det's can be exactly computed for certain metrics by the Gel'fand-Yaglom technique to compare with the Seeley expansion

$$\left\langle \omega \right| e^{-\tau \mathcal{O}} \left| \omega \right\rangle = \frac{1}{4\pi\tau} \frac{1}{\sqrt{\det \lambda^{ab}}} + \frac{R}{24\pi} + \mathcal{O}(\tau)$$

which starts with the term $1/\tau$ in 2 dimensions. For $\tau \sim 1/\Lambda^2$ higher terms are suppressed as R/Λ^2 only for smooth fields but revive if not

Mean-field vacuum

Ambjørn, Y.M. (2017)

The result for diagonal and constant $\lambda^{ab} = \bar{\lambda} \delta^{ab}$ and $\rho_{ab} = \bar{\rho} \delta_{ab}$

$$S_{\text{eff}} = \frac{K_0}{2} \bar{\lambda} \left(\frac{L^2}{\omega_L^2} + \frac{\beta^2}{\omega_\beta^2} \right) \omega_L \omega_\beta + K_0 (1 - \bar{\lambda}) \bar{\rho} \omega_L \omega_\beta$$
$$- \left(\frac{d}{2\bar{\lambda}} - 1 \right) \Lambda^2 \bar{\rho} \omega_L \omega_\beta - \frac{\pi (d - 2)}{6} \frac{\omega_L}{\omega_\beta}$$

for $L \gg \beta$ omitting the boundary terms. The minimum is reached at (quantum vacuum)

$$\bar{\lambda} = \frac{1}{2} \left(1 + \frac{\Lambda^2}{K_0} + \sqrt{\left(1 + \frac{\Lambda^2}{K_0}\right)^2 - \frac{2d\Lambda^2}{K_0}} \right)$$
$$\bar{\rho} \propto \frac{\bar{\lambda}}{\sqrt{\left(1 + \frac{\Lambda^2}{K_0}\right)^2 - \frac{2d\Lambda^2}{K_0}}}$$
$$\omega_\beta = \frac{\omega_L}{L} \sqrt{\beta^2 - \frac{\pi(d-2)}{3K_0\bar{\lambda}}}$$
$$S_{\rm mf} = K_0 \bar{\lambda} L \sqrt{\beta^2 - \frac{\pi(d-2)}{3K_0\bar{\lambda}}}$$

Mean-field vacuum (cont.)

The approximation describes a mean field which takes into account an infinite set of pertubative diagrams about the classical vacuum. Then λ^{ab} and ρ_{ab} do not fluctuate which becomes exact at large d.

It is like 2d O(N) sigma-model at large N where the Lagrange multiplier does not fluctuate (summing the bubble graphs). The large-N vacuum is very closed to the physical vacuum even for N = 3.

The minimization over ω_{β}/ω_L is also needed at the saddle point.

The square root is well-defined if

$$K_0 > K_* = \left(d - 1 + \sqrt{d^2 - 2d}\right) \Lambda^2 \stackrel{d \to \infty}{\to} 2d\Lambda^2$$

Perturbation theory is recovered by expanding in $1/K_0 \sim \hbar$. Then $\bar{\lambda}$ ranges between 1 (classical) and (quantum) value

$$\bar{\lambda}_* = \frac{1}{2} \left(d - \sqrt{d^2 - 2d} \right) \stackrel{d \to \infty}{\to} \frac{1}{2}$$

3. Two scaling regimes:Gulliver's vs. Lilliputian

Lattice-like scaling limit (Gulliver's)

The ground state energy (Alvarez-Arvis)

$$E_0(\beta) = K_0 \overline{\lambda} \sqrt{\beta^2 - \frac{\pi(d-2)}{3K_0 \overline{\lambda}}}$$

does not scale because $K_0 > K_* \sim \Lambda^2$ for $\overline{\lambda}$ to be real $(> \overline{\lambda}_*)$. Let

$$\beta^2 > \beta_{\min}^2 = \frac{\pi(d-2)}{3K_*\overline{\lambda}_*}, \qquad \overline{\lambda}_* = \frac{1}{2}\left(d - \sqrt{d^2 - 2d}\right)$$

for not to have a tachyon.

Choose the smallest possible value $\beta = \beta_{\min}$

$$E_0(\beta) \propto \frac{K_0 \overline{\lambda}}{\Lambda} \sqrt{\overline{\lambda} - \overline{\lambda}_*}$$

which scales to m if

$$\overline{\lambda} - \overline{\lambda}_* \propto \frac{m^2}{\Lambda^2}, \qquad K_0 - K_* \propto \frac{m^4}{\Lambda^2}$$

The scaling does not exist for excited states (larger values of β) and thus is particle-like similar to lattice regularizations of a string, where only the lowest mass scales to finite, excitations scale to infinity Durhuus, Fröhlich, Jonsson (1984), Ambjørn, Durhuus (1987)

Lattice-like scaling limit (Gulliver's)

The ground state energy

$$E_N(\beta) = K_0 \overline{\lambda} \sqrt{\beta^2 + \frac{1}{K_0 \overline{\lambda}} \left(-\frac{\pi (d-2)}{3} + 8N \right)}$$

does not scale because $K_0 > K_* \sim \Lambda^2$ for $\overline{\lambda}$ to be real $(> \overline{\lambda}_*)$. Let

$$\beta^2 > \beta_{\min}^2 = \frac{\pi(d-2)}{3K_*\overline{\lambda}_*}, \qquad \overline{\lambda}_* = \frac{1}{2}\left(d - \sqrt{d^2 - 2d}\right)$$

for not to have a tachyon.

Choose the smallest possible value $\beta = \beta_{\min}$

$$E_0(\beta) \propto \frac{K_0 \overline{\lambda}}{\Lambda} \sqrt{\overline{\lambda} - \overline{\lambda}_*}$$

which scales to m if

$$\overline{\lambda} - \overline{\lambda}_* \propto \frac{m^2}{\Lambda^2}, \qquad K_0 - K_* \propto \frac{m^4}{\Lambda^2}$$

The scaling does not exist for excited states (larger values of β) and thus is particle-like similar to lattice regularizations of a string, where only the lowest mass scales to finite, excitations scale to infinity Durhuus, Fröhlich, Jonsson (1984), Ambjørn, Durhuus (1987)

Lilliputian string-like scaling limit

Let us "renormalize" the units of length

$$L_R = \sqrt{\frac{\overline{\lambda}}{\overline{\lambda} - \overline{\lambda}_*}} L, \qquad \beta_R = \sqrt{\frac{\overline{\lambda}}{\overline{\lambda} - \overline{\lambda}_*}} \beta$$

to obtain for the effective action

$$S_{\rm mf} = K_R L_R \sqrt{\beta_R^2 - \frac{\pi d}{3K_R}}, \quad K_R = K_0(\bar{\lambda} - \bar{\lambda}_*)$$

The renormalized string tension K_R scales to finite if

$$K_0 \to K_* + \frac{K_R^2}{2\Lambda^2 \sqrt{d^2 - 2d}}, \quad K_* = \left(d - 1 + \sqrt{d^2 - 2d}\right) \Lambda^2$$

reproducing the Alvarez-Arvis spectrum of continuum string. The average area is also finite

$$\langle Area \rangle = L_R \frac{\left(\beta_R^2 - \frac{\pi d}{6K_R}\right)}{\sqrt{\beta_R^2 - \frac{\pi d}{3K_R}}}$$

 \Rightarrow minimal area for $\beta_R^2 \gg \pi d/(3K_R)$ and diverges if $\beta_R^2 \to \pi d/(3K_R)$

Lilliputian string-like scaling limit (cont.)

It looks like for the zeta-function regularization, but

$$\text{length} = \sqrt{\frac{\bar{\lambda} - \bar{\lambda}_*}{\bar{\lambda}}} \text{length}_R \propto \frac{\sqrt{K_R}}{\Lambda} \text{length}_R$$

in target space which is of order of the cutoff (\Rightarrow Lilliputian)

Nevertheless, the cutoff (in parameter space) $\Delta \omega = 1/(\Lambda \sqrt[4]{g})$ fixes maximal number of modes in the mode expansion

$$X_q = \sum_{m,n\geq 0} \left(a_{mn} \cos \frac{2\pi m\omega_2}{\omega_\beta} + b_{mn} \sin \frac{2\pi m\omega_2}{\omega_\beta} \right) \sin \frac{\pi n\omega_1}{\omega_L},$$

to be

$$n_{\max}^{(1)} \sim \Lambda \sqrt[4]{g}\omega_L \qquad n_{\max}^{(2)} \sim \Lambda \sqrt[4]{g}\omega_\beta$$

Classically $\sqrt[4]{g}\omega_{\beta} = \beta$ reproducing Brink-Nielsen (1973)

Quantumly
$$\sqrt[4]{g}\omega_{\beta} \propto \frac{\beta}{\sqrt{\overline{\lambda} - \overline{\lambda}_*}} = \frac{\sqrt{K_0}\beta}{\sqrt{K_R}}$$
 is much larger

 \implies classical music can be played on the Lilliputian strings

The Lilliputian world

- The Lilliputian world is of the size of the target-space cutoff
- It is still a continuum because infinitely smaller distances can be resolved (infinitely many stringy modes)
- The Lilliputian scaling regime is perfectly recovered by results of the zeta-function regularization
- Linear Regge trajectories signalize about the Lilliputian world
- Gulliver's tools are too coarse to resolve the Lilliputian world (this is why lattice string regularizations of 1980's never reproduce canonical quantization)

4. Instability of classical vacuum

Semiclassical energy

Brink, Nielsen (1973)

Semiclassical (or one-loop) correction due to zero-point fluctuations

$$S_{1l} = \left[K_0 - \frac{(d-2)}{2} \Lambda^2 \right] L\beta - \frac{\pi (d-2)L}{6\beta}$$

bulk term Casimir energy

To make it finite, it is introduced the renormalized string tension

$$K_R = K_0 - \frac{(d-2)}{2} \Lambda^2$$

which is kept finite as $\Lambda \to \infty$. Then it is assumed that it works order by order of the perturbative expansion about the classical vacuum, so that K_R can be made finite by fine tuning K_0 .

We see however from the mean-field formula

$$S_{\rm mf} = K_0 \bar{\lambda} L \sqrt{\beta^2 - \frac{\pi (d-2)}{3K_0 \bar{\lambda}}}$$

that S_{mf} never vanishes with changing K_0 (except ...). Thus the one-loop correction simply lowers for d > 2 the energy of the classical vacuum state which may indicate its instability.

Effective potential

To investigate stability of the vacuum, add the source term like in QFT

$$S_{\rm src} = \frac{K_0}{2} \int \mathrm{d}^2 \omega \, j^{ab} \rho_{ab}$$

defining the field

$$\rho_{ab}(j) = -\frac{2}{K_0} \frac{\delta}{\delta j^{ab}} \log Z.$$

Minimizing for constant $j^{ab} = j\delta^{ab}$ we find Ambjørn, Y.M. (2017)

$$\bar{\lambda}(j) = \frac{1}{2} \left(1 + j + \frac{\Lambda^2}{K_0} \right) + \sqrt{\frac{1}{4} \left(1 + j + \frac{\Lambda^2}{K_0} \right)^2 - \frac{d\Lambda^2}{2K_0}}$$

$$\bar{\rho}(j) = \frac{1}{2} + \frac{1 + j + \frac{\Lambda^2}{K_0}}{\sqrt{\left(1 + j + \frac{\Lambda^2}{K_0}\right)^2 - \frac{2d\Lambda^2}{K_0}}} \qquad \bar{\lambda}(\bar{\rho}) = \sqrt{\frac{d\Lambda^2}{2K_0}}\sqrt{\frac{\bar{\rho}}{\bar{\rho} - 1}}$$

in the mean field approximation for $\omega_L = L$ and $\omega_\beta = \beta \gg 1\sqrt{K_0}$,

Effective potential (cont.)

"Effective potential" is given by the Legendre transformation

$$\Gamma(\bar{\rho}) = -\frac{1}{K_0 L\beta} \log Z - j(\bar{\rho})\bar{\rho}$$

In the mean-field approximation
$$\Gamma(\bar{\rho}) = \left(1 + \frac{\Lambda^2}{K_0}\right)\bar{\rho} - \sqrt{\frac{2d\Lambda^2}{K_0}\bar{\rho}(\bar{\rho} - 1)}$$

Classical vacuum $\bar{\rho} = 1$ is unstable and a stable minimum occurs at

$$\bar{\rho}(0) = \frac{1}{2} + \frac{1 + \frac{\Lambda^2}{K_0}}{2\sqrt{\left(1 + \frac{\Lambda^2}{K_0}\right)^2 - \frac{2d\Lambda^2}{K_0}}}$$

if $K_0 > K_*$ (same value as before for $\beta \gg 1/\sqrt{K_0}$). Near the minimum

$$\Gamma(\bar{\rho}) = \left[\left(1 + \frac{\Lambda^2}{K_0} \right)^2 - \frac{2d\Lambda^2}{K_0} \right]^{1/2} + \frac{K_0}{2d\Lambda^2} \left[\left(1 + \frac{\Lambda^2}{K_0} \right)^2 - \frac{2d\Lambda^2}{K_0} \right]^{3/2} [\bar{\rho} - \bar{\rho}(0)]^2$$

String susceptibility

Entropy of surfaces of the area A

$$\left\langle \delta^{(1)} \left(\int \rho - A \right) \right\rangle \stackrel{A \to \infty}{\propto} A^{\gamma_{\mathsf{str}} - 2} \, \mathsf{e}^{CA}$$

Passage from grand canonical to canonical ensemble at fixed area A.

Representing

$$\delta^{(1)}\left(\int \rho - A\right) = \int_{\uparrow} \frac{\mathrm{d}j}{2\pi \mathrm{i}} \,\mathrm{e}^{jA - j\int\rho}$$

we identify j with the source above.

Expanding about the saddle point

Ambjørn, Y.M. (2017), (2021)

$$j\rho - \bar{\lambda}(j) = -\Gamma(\rho) + \sqrt{\frac{2K_0}{d\Lambda^2}} \left[\rho(\rho - 1)\right]^{3/2} (\Delta j)^2$$

→ Helmholtz free energy in the mean-field approximation

$$F = K_0 L\beta \Gamma(\frac{A}{L\beta}) + \frac{3}{4} \log \left[\frac{A}{L\beta} \left(\frac{A}{L\beta} - 1\right)\right] + \text{const.}$$

 \implies thus $\gamma_{str} = 1/2$. It is quite different from $\gamma_{str} = 1$ of KPZ-DDK

5. Stability of mean-field vacuum

Coleman-Weinberg potential

Integrating out X_q^{μ} we get (a part of) the effective action

$$\frac{d}{2} \operatorname{tr} \ln \left[-\frac{1}{\rho} \partial_a \lambda^{ab} \partial_b \right]_{\operatorname{reg}} = \sum_n \frac{1}{n} \cdot \sum_{a} \cdot \frac{1}{\rho} \cdot \frac{1}{$$

wavy lines correspond to fluctuations $\delta\lambda^{ab}$ or $\delta\rho$ about ground state

$$\lambda^{ab}(\omega) = \bar{\lambda}\delta^{ab} + \delta\lambda^{ab}, \qquad \rho(\omega) = \bar{\rho} + \delta\rho$$

Positively definite quadratic form for imaginary $\delta \lambda^{ab}$ and real $\delta \rho$

$$S_{\text{div}}^{(2)} = \int \left[-\frac{d\Lambda^2 \bar{\rho}}{2\bar{\lambda}} \delta\lambda_2 - \left(K_0 - \frac{d\Lambda^2}{2\bar{\lambda}^2} \right) \delta\rho \frac{\delta\lambda^{aa}}{2} - \frac{d\Lambda^2 \bar{\rho}}{2\bar{\lambda}^3} \left(\frac{\delta\lambda^{aa}}{2} \right)^2 \right]$$
$$\delta\lambda_2 = \frac{1}{8\bar{\lambda}} (\delta\lambda_{11} - \delta\lambda_{22})^2 + \frac{1}{2\bar{\lambda}} (\delta\lambda_{12})^2$$

Polyakov's book: typical $\delta \lambda \sim 1/\Lambda$ so λ^{ab} is localized and decouples. Thus only ρ fluctuates (stable for 2 < d < 26)

The private life occurs at distances $\sim \Lambda^{-1}$ but is observable Y.M. (2021)

6. Fluctuations about mean field

Expansion about the mean field

For 2 < d < 26 define the partition function

$$Z[b_0] = \int \mathcal{D}\rho \,\mathrm{e}^{-S_{\mathrm{ind}}}$$

 $b_0^2 = 6/(26 - d)$ controls a "semiclassical" expansion about the mean field which plays the role of a "classical" vacuum as $b_0^2 \rightarrow 0$. Like 1/N expansion in the sigma model) (ghosts differ the situation from the sigma model)

Massive determinants of Pauli-Villars' regulators (ghost statistics)

$$\det\left(-\frac{\bar{\lambda}}{\rho}\partial^{2}+M^{2}\right)^{d/2}=\int \mathcal{D}Y_{M}^{\mu}\,\mathrm{e}^{-\frac{K_{0}}{2}\int\mathrm{d}^{2}\omega\left(\bar{\lambda}\delta^{ab}\partial_{a}Y_{M}\cdot\partial_{b}Y_{M}+M^{2}\rho Y_{M}\cdot Y_{M}\right)}$$

contribute to the energy-momentum tensor

$$T(z) \equiv T_{zz} = 2\pi K_0 \overline{\lambda} \partial_z X \cdot \partial_z X + \text{ghosts} + \text{regulators}$$

Regulators explicitly interact with the metric ρ in conformal gauge

$$\left\langle \delta \rho(-p) Y_M^{\mu}(k+p) Y_M^{\nu}(-k) \right\rangle_{\text{truncated}} = -K_0 M^2 \delta^{\mu\nu}$$

Computation of S_{eff}

Regularized determinant

$$\frac{d}{2} \operatorname{tr} \ln \left[-\frac{\overline{\lambda}}{\rho} \partial^2 \right]_{\operatorname{reg}} = \sum_n \frac{1}{n} \cdot \frac{1}{\sqrt{n}} \cdot \frac{1}{$$

wavy lines correspond to

$$\delta \rho(z) = \bar{\rho} \left(e^{\varphi(z)} - 1 \right)$$

Terms of all order in φ but tremendous cancellation for smooth φ :

$$S_{\text{eff}} = \frac{26 - d}{96\pi} \int \partial_a \varphi \partial_a \varphi \qquad \text{if} \quad R \ll \Lambda^2$$

Exact result when quantum fluctuations of φ disregarded

In general we expand $\varphi=\varphi_{\rm Cl}+\varphi_{\rm q}$ and average over $\varphi_{\rm q}$

Fiducial metric ($\hat{R} \ll \Lambda^2$)

$$\hat{\rho}_{ab} = \delta_{ab} e^{\varphi_{\rm Cl}}$$

Path integrating over λ^{ab}

Simplified quadratic action $(\lambda^{z\bar{z}} = 0)$

$$\mathcal{S}^{(2)} = \int \left[\frac{1}{4\pi b_0^2} \partial \varphi \bar{\partial} \varphi + \nu \left(\lambda^{zz} \nabla \partial \varphi + \lambda^{\overline{z}\overline{z}} \bar{\nabla} \bar{\partial} \varphi \right) - d\Lambda^2 \bar{\rho} \, \mathrm{e}^{\varphi} \lambda^{zz} \lambda^{\overline{z}\overline{z}} \right]$$

Integrating out λ^{zz} and $\lambda^{\overline{z}\overline{z}}$

$$S^{(2)} = \int \left[\frac{1}{4\pi b_0^2} \partial \varphi \bar{\partial} \varphi + \frac{\nu^2}{d\Lambda^2 \bar{\rho}} e^{-\varphi} (\nabla \partial \varphi) (\bar{\nabla} \bar{\partial} \varphi) \right]$$

$$= \int \left[\frac{1}{4\pi b_0^2} \partial \varphi \bar{\partial} \varphi + \frac{\nu^2}{d\Lambda^2 \bar{\rho}} e^{-\varphi} \left(\partial^2 \varphi - (\partial \varphi)^2 \right) \left(\bar{\partial}^2 \varphi - (\bar{\partial} \varphi)^2 \right) \right]$$

Integrating by parts

$$S^{(2)} = \frac{1}{4\pi b_0^2} \int \left\{ \partial \varphi \bar{\partial} \varphi + 4\varepsilon \,\mathrm{e}^{-\varphi} \left[(\partial \bar{\partial} \varphi)^2 + \partial \varphi \bar{\partial} \varphi \partial \bar{\partial} \varphi \right] \right\}, \quad \varepsilon = \frac{\pi \nu^2 b_0^2}{d\Lambda^2 \bar{\rho}}$$

The second additional term does not appear for Polyakov's string

Beyond Liouville action

Integrating over X^{μ} , ghosts, regulators Y^{μ} , \bar{Y}^{μ} , Z^{μ} and λ^{ab}

$$S = \frac{1}{16\pi b_0^2} \int \sqrt{g} \left[-R \frac{1}{\Delta} R + 2m_0^2 + a^2 R \left(R + Gg^{ab} \partial_a \frac{1}{\Delta} R \partial_b \frac{1}{\Delta} R \right) \right]$$

curvature squared R^2 (Polyakov) + nonlocal $G \neq 0$ (Nambu-Goto) or

$$S = \frac{1}{4\pi b_0^2} \int \left[\partial \varphi \bar{\partial} \varphi + \frac{\mu_0^2}{2} e^{\varphi} + 4\varepsilon e^{-\varphi} (\partial \bar{\partial} \varphi)^2 - 4G\varepsilon e^{-\varphi} \partial \varphi \bar{\partial} \varphi \partial \bar{\partial} \varphi \right]$$

in conformal gauge $\rho_{ab}=\delta_{ab}\bar\rho\,{\rm e}^\varphi$ with worldsheet cutoff $\varepsilon=a^2/\bar\rho$ and $\mu_0^2=m_0^2\bar\rho$

Classically extra terms vanishes for smooth $\varepsilon R \ll 1$ but quartic derivative provides UV cutoff but also interaction with coupling $\varepsilon \Rightarrow$ uncertainties $\varepsilon \times \varepsilon^{-1}$ so they revive quantumly \Rightarrow produce anomalies

Beyond Liouville action (cont.)

Illustration by the Seeley expansion of
$$e^{a^2\Delta}$$
 DeWitt (1963)

$$\left\langle \omega | e^{a^2 \Delta} | \omega \right\rangle = \frac{1}{4\pi a^2} + \frac{1}{24\pi} R(\omega) + \frac{a^2}{120\pi} \left(\Delta R(\omega) + \frac{1}{2} R^2(\omega) \right) + \dots$$

Splitting $\varphi = \varphi_{\rm cl} + \varphi_{\rm q}$ and averaging over $\varphi_{\rm q}$

$$\begin{split} \left\langle \phi_{\mathbf{q}}(\omega)\partial^{2}\phi_{\mathbf{q}}(\omega)\right\rangle_{\mathbf{q}} &= \frac{2b_{0}^{2}}{\varepsilon} + \text{less singular} \\ &= \frac{2b_{0}^{2}}{a^{2}} e^{\phi_{\mathbf{CI}}} + \text{less singular} \end{split}$$

we get

$$\langle R(\omega) \rangle_{q} = \frac{2b_{0}^{2}}{a^{2}} + \text{less singular},$$

$$\left\langle R^2(\omega) \right\rangle_{\mathsf{q}} = \frac{3b_0^2}{\pi} \frac{1}{a^4} + \frac{4b_0^2}{a^2} R_{\mathsf{CI}}(\omega) + \mathsf{less singular}$$

giving contribution to conformal anomaly

7. CFT á la KPZ-DDK

Review of KPZ-DDK

Knizhnik-Polyakov-Zamolodchikov (1988), David (1988), Distler-Kawai (1989) Liouville action in fiducial (or background) metric \hat{g}_{ab}

$$S_L = \frac{1}{8\pi b^2} \int \sqrt{\hat{g}} \left(\frac{1}{2} \hat{g}^{ab} \partial_a \varphi \partial_b \varphi + q \hat{R} \varphi \right) + \mu^2 \int \sqrt{\hat{g}} \, \mathrm{e}^{\varphi}$$

$$b^2 = b_0^2 + \mathcal{O}(b_0^4), \qquad q = 1 + \mathcal{O}(b_0^2) \qquad b_0^2 = \frac{6}{26 - d}$$

are "renormalized" parameters of the effective action. Energy-momentum pseudotensor

$$T(z) = \text{matter} + \text{ghosts} - \frac{1}{4b^2} \left(\partial_z \varphi \partial_z \varphi - 2q \partial_z^2 \varphi \right)$$

Background independence: the total central charge

$$d - 26 + 1 + 6\frac{q^2}{b^2} = 0$$

and the conformal weight

$$\Delta(e^{\varphi}) = q - b^2 = 1$$

$$\implies \qquad b = \sqrt{\frac{25 - d}{24}} - \sqrt{\frac{1 - d}{24}}, \qquad q = 1 + b^2$$

Energy-momentum tensor

For minimal coupling to gravitational \hat{g}_{ab}

$$-4b_0^2 T_{ab}^{(\min)} = \partial_a \varphi \partial_b \varphi - \frac{1}{2} g_{ab} \partial^c \varphi \partial_c \varphi - \mu_0^2 g_{ab} - \varepsilon \partial_a \varphi \partial_b \Delta \varphi - \varepsilon \partial_a \Delta \varphi \partial_b \varphi + \varepsilon g_{ab} \partial^c \varphi \partial_c \Delta \varphi + \frac{\varepsilon}{2} g_{ab} (\Delta \varphi)^2 - G \varepsilon \partial_a \varphi \partial_b \varphi \Delta \varphi + G \frac{\varepsilon}{2} \partial_a \varphi \partial_b (\partial^c \varphi \partial_c \varphi) + G \frac{\varepsilon}{2} \partial_a (\partial^c \varphi \partial_c \varphi) \partial_b \varphi - G \frac{\varepsilon}{2} g_{ab} \partial^c \varphi \partial_c (\partial^d \varphi \partial_d \varphi)$$

For diffeomorphism invariant action

$$-4b_0^2 T_{ab} = -4b_0^2 T_{ab}^{(\min)} - 2(\partial_a \partial_b - g_{ab} \partial^c \partial_c)(\varphi - \varepsilon \Delta \varphi + G \frac{\varepsilon}{2} g^{ab} \partial_a \varphi \partial_b \varphi) + 2G\varepsilon (\partial_a \partial_b - g_{ab} \partial^c \partial_c) \frac{1}{\Delta} \partial^d (\partial_d \varphi \Delta \varphi)$$

It is conserved and traceless (!) thanks to diffeomorphism invariance

$$-4b_0^2 T_{zz} = (\partial \varphi)^2 - 2\varepsilon \partial \varphi \partial \Delta \varphi - 2\partial^2 (\varphi - \varepsilon \Delta \varphi) - G\varepsilon (\partial \varphi)^2 \Delta \varphi + 4G\varepsilon \partial \varphi \partial (e^{-\varphi} \partial \varphi \overline{\partial} \varphi) - 4G\varepsilon \partial^2 (e^{-\varphi} \partial \varphi \overline{\partial} \varphi) + G\varepsilon \partial (\partial \varphi \Delta \varphi) + G\varepsilon \frac{1}{\overline{\partial}} \partial^2 (\overline{\partial} \varphi \Delta \varphi)$$

Pauli-Villars' regulators

Pauli-Villars' regulators: Grassmann Y, \overline{Y} (M^2) and normal Z ($2M^2$)

$$S_{\text{reg.}} = \frac{1}{16\pi b_0^2} \int \sqrt{g} \left[g^{ab} \partial_a Y \partial_b Y + M^2 Y^2 + \varepsilon (\Delta Y)^2 + G \varepsilon g^{ab} \partial_a Y \partial_b Y R \right]$$

or in conformal gauge

$$S_{\text{reg.}} = \frac{1}{4\pi b_0^2} \int \left[\partial Y \bar{\partial} Y + \frac{M^2}{4} e^{\varphi} Y^2 + 4\varepsilon e^{-\varphi} (\partial \bar{\partial} Y)^2 - 4G\varepsilon e^{-\varphi} \partial Y \bar{\partial} Y \partial \bar{\partial} \varphi \right]$$

Conserved and traceless (!) energy-momentum tensor

$$-4b_0^2 T_{ab}^{(\text{reg})} = \partial_a Y \partial_b Y - \frac{1}{2} g_{ab} \partial^c Y \partial_c Y - \frac{M^2}{2} g_{ab} Y^2 - \varepsilon \partial_a Y \partial_b \Delta Y$$

$$-\varepsilon \partial_a \Delta Y \partial_b Y + \varepsilon g_{ab} \partial^c Y \partial_c \Delta Y + \frac{\varepsilon}{2} g_{ab} (\Delta Y)^2 - G \varepsilon \partial_a Y \partial_b Y \Delta \varphi$$

$$+ G \frac{\varepsilon}{2} \partial_a \varphi \partial_b (\partial^c Y \partial_c Y) + G \frac{\varepsilon}{2} \partial_a (\partial^c Y \partial_c Y) \partial_b \varphi - G \frac{\varepsilon}{2} g_{ab} \partial^c \varphi \partial_c (\partial^d Y \partial_d Y)$$

$$- G \varepsilon (\partial_a \partial_b - g_{ab} \partial^c \partial_c) (\partial^c Y \partial_c Y).$$

⇒ conformal invariance expected to be maintained quantumly

$$-4b_0^2 T_{zz}^{(\text{reg})} = \partial Y \partial Y - 2\varepsilon \partial Y \partial \Delta Y - G\varepsilon \partial Y \partial Y \Delta \varphi + 4G\varepsilon \partial \varphi \partial (e^{-\varphi} \partial Y \overline{\partial} Y) -4G\varepsilon \partial^2 (e^{-\varphi} \partial Y \overline{\partial} Y)$$

DDK revisited

One-loop operator products $T_{zz}(z) e^{\varphi(0)}$ and $T_{zz}(z)T_{zz}(0)$

Diagrams a) to j) contribute $q\alpha$ to the conformal weight of $e^{\alpha\varphi(0)}$ Diagrams k) contributes $-b^2\alpha^2$ to the conformal weight of $e^{\alpha\varphi(0)}$ Additional terms do not contribute as $\varepsilon \to 0$, reproducing DDK

$$q\alpha - b^2 \alpha^2 = 1$$

One-loop central charge

Diagrams a) to j) contribute $6q^2/b^2$ to the central charge as usual. Diagram k) contributes usual 1 to the central charge but the nonlocal term in T_{zz} revives

$$2 \cdot \frac{1}{16} \left\langle 2G\varepsilon \partial^{3} \frac{1}{\overline{\partial}} \overline{\partial} \varphi(z) \overline{\partial} \varphi(z) \partial \varphi(0) \right\rangle = (8\pi)^{2} \frac{G\varepsilon}{2} \partial^{3} \frac{1}{\overline{\partial}} (\partial \overline{\partial} G_{\varepsilon}(z))^{2} \rightarrow \frac{G\pi}{2} \partial^{3} \frac{1}{\overline{\partial}} \delta^{(2)}(z) = -3G \frac{1}{z^{4}},$$

$$2 \cdot \frac{1}{16} \left\langle 2G\varepsilon \partial^{3} \frac{1}{\overline{\partial}} \overline{\partial} \varphi(z) \overline{\partial} \varphi(z) (-8\varepsilon) \partial \varphi(0) \partial^{2} \overline{\partial} \varphi(0) \right\rangle$$
$$= -(8\pi)^{2} 4G\varepsilon^{2} \partial^{3} \frac{1}{\overline{\partial}} (\partial \overline{\partial} G_{\varepsilon}(z) \partial^{2} \overline{\partial}^{2} G_{\varepsilon}(z)) \rightarrow -G\pi \partial^{3} \frac{1}{\overline{\partial}} \delta^{(2)}(z) = 6G \frac{1}{z^{4}}$$

The second DDK equation is modified (assuming one loop is exact)

$$-\frac{6}{b_0^2} + 1 + \frac{6q^2}{b^2} + 6Gq = 0 \quad \Rightarrow \quad \alpha b = \sqrt{\frac{25 - d - 6Gq}{24}} - \sqrt{\frac{1 - d + 6Gq}{24}}$$

8. Algebraic check of DDK

One-loop propagator

One-loop propagator $\langle \varphi(-p)\varphi(p)\rangle$ for $\varepsilon = 0$

 \Rightarrow the usual conformal anomaly

c) =
$$-\frac{1}{4} \int \frac{\mathrm{d}^2 k}{(2\pi)^2} \left\{ \frac{2M^2}{(k^2 + M^2)} - \frac{2M^2}{(k^2 + 2M^2)} \right\} |\varphi(p)|^2 = -\frac{M^2}{8\pi} \log 2 |\varphi(p)|^2$$

⇒ the renormalization of μ^2 rather than b^2 . One-loop renormalization of b^2

$$\frac{1}{b^2} = \frac{1}{b_0^2} - \frac{1}{6} + \mathcal{O}(b_0^2)$$

One-loop renormalization of α

One-loop renormalization of $e^{\varphi(0)} \rightarrow e^{\alpha \varphi(0)}$ for $\varepsilon = 0$

b) =
$$\frac{1}{2} \left\langle \varphi(0)^2 \right\rangle = b_0^2 \left[\varphi(0) + \text{const.} \right]$$

because the propagator logarithmically diverges at coinciding points and the worldsheet cutoff $\varepsilon \propto a^2 \, {\rm e}^{-\varphi}$. Standard one-loop renormalization

$$\alpha = 1 + b_0^2 + \mathcal{O}(b_0^4).$$

One-loop renormalization of T_{zz}

One-loop renormalization of T_{zz} for $\varepsilon = 0$

b) =
$$\frac{1}{4}(8\pi)\int \frac{\mathrm{d}^2 k}{(2\pi)^2} k_z(p-k)_z \{\frac{2M^2}{(k^2+M^2)[(k-p)^2+M^2]} -\frac{2M^2}{(k^2+2M^2)[(k-p)^2+2M^2]}\}\varphi(p) \rightarrow \frac{p_z^2}{12}\varphi(p)$$

Sum of this and the other diagrams

$$\left\langle T_{zz}^{(\text{reg})} \right\rangle_{Y} = -\frac{1}{12} [\partial^{2} \varphi - \frac{1}{2} (\partial \varphi)^{2}] + \mathcal{O}(\varphi^{5})$$
 (1)

wavy $= e^{\varphi} - 1$

tremendous cancellation of diagrams due to diffeomorphism invariance

$$\frac{q}{b^2} = \frac{1}{b_0^2} - \frac{1}{6} + \mathcal{O}(b_0^2) \quad \Rightarrow \quad q = 1 + \mathcal{O}(b_0^4)$$

9. Cancellation of logs at two loops

wavy lines are now associated with φ . Combinatorics: a) + 2b) - 4c) - d) + e) + f). The result

$$S_{\text{eff}}^{(2)} = \frac{1}{16\pi b^2} \int \partial_a \varphi \partial_a \varphi \quad \frac{1}{b^2} = \frac{1}{b_0^2} - \frac{1}{6} - 5b_0^2 + \mathcal{O}(b_0^2) \quad b_0^2 = \frac{6}{26 - d}$$

Cancellation of IR divergences (theorem due to quadratic S_{eff}). Most important for maintaining conformal invariance.

Computation of $S_{eff}^{(3)}$

Computation of $S_{\rm eff}^{(3)}$ (cont.)

The result (IR divergences again mutually cancel)

$$S_{\text{eff}}^{(3)} = -\frac{127}{80\pi} \int \varphi \partial_a \varphi \partial_a \varphi + \mathcal{O}(h)$$

nonvanishing because of quadratic divergences $\frac{1}{\Lambda^2} \times \Lambda^2 = \text{finite}$

In covariant notations

$$S_{\text{eff}}^{(3)} = -\frac{127}{160\pi} \int R \frac{1}{\Delta} R \frac{1}{\Delta} R + \mathcal{O}(h)$$

 S_{eff} differs from (massless) Liouville and is not quadratic in $\varphi \implies \varphi$ cannot be a primary field (a field redefinition required!).

$$\rho(\varphi) = e^{\Phi(\varphi)} \quad \Phi \text{ is primary}$$

The measure for path-integration over Φ is generically nonlinear but Jacobian for $\varphi \to \Phi(\varphi)$ is inessential because of no derivatives

CFT consideration

Generically we get to all orders in b_0^2 (for $\hat{g}_{ab} = \delta_{ab}$)

$$S_{\text{eff}} = \frac{1}{16\pi b^2} \int f(\varphi) \partial_a \varphi \partial_a \varphi \qquad f(x) = 1 - \frac{127b^2}{5}x$$

which is invariant under modified conformal transformation

$$\delta z = \xi(z)$$
 $\delta \varphi = \frac{1}{\sqrt{f(\varphi)}} \partial \xi$

nonlinear like for Polchinski-Strominger $\implies \varphi$ is not primary

Introducing the new field which is now primary

$$\Phi(\varphi) = \int_0^{\varphi} \mathrm{d}x \sqrt{f(x)} \qquad \delta \Phi = \partial \xi$$

we write

$$S_{\rm eff} = \frac{1}{16\pi \mathcal{B}^2} \int \partial_a \Phi \partial_a \Phi$$

where \mathcal{B}^2 accounts for the Jacobian from φ to Φ á la DDK but it is *not* essential at one loop (Ambjørn, Y.M., Semenoff unpublished)

Function f(x) may be nonuniversal (regularization dependent) but results seems to be the same (universality!)

Conclusion

Differences between the Nambu-Goto and Polyakov strings:

- Classical (perturbative) vacuum is stable only for d < 2. For 2 < d < 26 the mean-field vacuum is stable instead
- Lilliputian strings for d > 2 versus Gulliver's strings for $d \le 2$
- Gulliver's tools (inherited from QFT) are too coarse to deal with the Lilliputian scaling regime
- String susceptibility index differs: 1/2 versus 1 for genus one
- Emergent action differs for nonsmooth φ
- 2D conformal invariance is maintained both classically and by fluctuations about the ground state (in both cases)
- The one-loop central charge of φ gets additional 6G